Publications

2023

We performed a series of aquaplanet simulations at the horizontal resolution from 50km to 6km with identical parameterization settings using the Geophysical Fluid Dynamics Laboratory’s Atmosphere Model version 4 implemented with the two-moment Morrison-Gettelman cloud microphysics with prognostic precipitation (GFDL AM4-MG2). At the finer resolution, the global mean resolved-scale precipitation increases and that from cumulus parameterization decreases. The model also simulates less/thinner clouds over the low latitudes and more/thicker clouds over the high latitudes as the resolution increases. The precipitation over the deep tropics is investigated in detail. We find little resolution sensitivity in the daily mean precipitation extremes. Changes of the equatorial resolved precipitation with resolution cannot be fully explained by the resolution dependence in the vertical velocity amplitude. We report a robust sensitivity in the convective organization over the deep tropics to the model resolution. In simulations of finer resolution, the localized convection is suppressed, and the organized convective system associated with large-scale circulations becomes more prominent.

Martin, Z. K., Simpson, I. R., Lin, P., Orbe, C., Tang, Q., Caron, J. M., Chen, C.-C., Kim, H., Leung, R., Richter, J. H., & Xie, S. (2023). The Lack of a QBO-MJO Connection in Climate Models With a Nudged Stratosphere. Journal of Geophysics Research Atmosphere, 128(17), e2023JD038722. Publisher’s Version: The Lack of a QBO-MJO Connection in Climate Models With a Nudged Stratosphere

The observed stratospheric quasi-biennial oscillation (QBO) and the tropospheric Madden-Julian oscillation (MJO) are strongly connected in boreal winter, with stronger MJO activity when lower-stratospheric winds are easterly. However, the current generation of climate models with internally generated representations of the QBO and MJO do not simulate the observed QBO-MJO connection, for reasons that remain unclear. This study builds on prior work exploring the QBO-MJO link in climate models whose stratospheric winds are relaxed toward reanalysis, reducing stratospheric biases in the model and imposing a realistic QBO. A series of ensemble experiments are performed using four state-of-the-art climate models capable of representing the MJO over the period 1980–2015, each with similar nudging in the stratosphere. In these four models, nudging leads to a good representation of QBO wind and temperature signals, however no model simulates the observed QBO-MJO relationship. Biases in MJO vertical structure and cloud-radiative feedbacks are investigated, but no conclusive model bias or mechanism is identified that explains the lack of a QBO-MJO connection.

2022

Lawrence, Z. D., Abalos, M., Ayarzaguena, B., Barriopedro, D., Butler, A. H., Calvo, N., de la Camara, A., Charlton-Perez, A., Domeisen, D. I. V., Dunn-Sigouin, E., Garcia-Serrano, J., Garfinkel, C. I., Hindley, N. P., Jia, L., Jucker, M., Karpechko, A. Y., Kim, H., Lang, A. L., Lee, S. H., … Wu, R. W.-Y. (2022). Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems. Weather and Climate Dynamics, 3(3), 977-1001. Publisher’s Version: Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems

The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems.

It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system's climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems.

These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere.

Andrews, T., Bodas-Salcedo, A., Gregory, J. M., Dong, Y., Armour, K. C., Paynter, D., Lin, P., Modak, A., Mauritsen, T., Cole, J. N. S., Medeiros, B., Benedict, J. J., Douville, H., Roehrig, R., Koshiro, T., Kawai, H., Ogura, T., Dufresne, J.-L., Allan, R. P., & Liu, C. (2022). On the effect of historical SST patterns on radiative feedback. Journal of Geophysics Research Atmosphere, 127(18), e2022JD036675. Publisher’s Version: On the effect of historical SST patterns on radiative feedback

We investigate the dependence of radiative feedback on the pattern of sea-surface temperature (SST) change in 14 Atmospheric General Circulation Models (AGCMs) forced with observed variations in SST and sea-ice over the historical record from 1871 to near-present. We find that over 1871–1980, the Earth warmed with feedbacks largely consistent and strongly correlated with long-term climate sensitivity feedbacks (diagnosed from corresponding atmosphere-ocean GCM abrupt-4xCO2 simulations). Post 1980, however, the Earth warmed with unusual trends in tropical Pacific SSTs (enhanced warming in the west, cooling in the east) and cooling in the Southern Ocean that drove climate feedback to be uncorrelated with—and indicating much lower climate sensitivity than—that expected for long-term CO2 increase. We show that these conclusions are not strongly dependent on the Atmospheric Model Intercomparison Project (AMIP) II SST data set used to force the AGCMs, though the magnitude of feedback post 1980 is generally smaller in nine AGCMs forced with alternative HadISST1 SST boundary conditions. We quantify a “pattern effect” (defined as the difference between historical and long-term CO2 feedback) equal to 0.48 ± 0.47 [5%–95%] W m−2 K−1 for the time-period 1871–2010 when the AGCMs are forced with HadISST1 SSTs, or 0.70 ± 0.47 [5%–95%] W m−2 K−1 when forced with AMIP II SSTs. Assessed changes in the Earth's historical energy budget agree with the AGCM feedback estimates. Furthermore satellite observations of changes in top-of-atmosphere radiative fluxes since 1985 suggest that the pattern effect was particularly strong over recent decades but may be waning post 2014.

Morgenstern, O., Kinnison, D. E., Mills, M., Michou, M., Horowitz, L. W., Lin, P., Deushi, M., Yoshida, K., O’Connor, F. M., Tang, Y., Abraham, L., Keeble, J., Dennison, F., Rozanov, E., Egorova, T., Sukhodolov, T., & Zeng, G. (2022). Comparison of Arctic and Antarctic stratospheric climates in chemistry versus no-chemistry climate models. Journal of Geophysics Research Atmosphere, 127(20), e2022JD037123. Publisher’s Version: Comparison of Arctic and Antarctic stratospheric climates in chemistry versus no-chemistry climate models

Using nine chemistry-climate and eight associated no-chemistry models, we investigate the persistence and timing of cold episodes occurring in the Arctic and Antarctic stratosphere during the period 1980–2014. We find systematic differences in behavior between members of these model pairs. In a first group of chemistry models whose dynamical configurations mirror their no-chemistry counterparts, we find an increased persistence of such cold polar vortices, such that these cold episodes often start earlier and last longer, relative to the times of occurrence of the lowest temperatures. Also the date of occurrence of the lowest temperatures, both in the Arctic and the Antarctic, is often delayed by 1–3 weeks in chemistry models, versus their no-chemistry counterparts. This behavior exacerbates a widespread problem occurring in most or all models, a delayed occurrence, in the median, of the most anomalously cold day during such cold winters. In a second group of model pairs there are differences beyond just ozone chemistry. In particular, here the chemistry models feature more levels in the stratosphere, a raised model top, and differences in non-orographic gravity wave drag versus their no-chemistry counterparts. Such additional dynamical differences can completely mask the above influence of ozone chemistry. The results point toward a need to retune chemistry-climate models versus their no-chemistry counterparts.

2021

Abalos, M., Calvo, N., Benito-Barca, S., Garny, H., Hardimann, S. C., Lin, P., Andrews, M. B., Butchart, N., Garcia, R. R., Orbe, C., Saint-Martin, D., Watanabe, S., & Yoshida, K. (2021). The Brewer–Dobson circulation in CMIP6. Atmospheric Chemistry and Physics, 21, 13571-13591. Publisher’s Version: The Brewer–Dobson circulation in CMIP6
The Brewer–Dobson circulation (BDC) is a key feature of the stratosphere that models need to accurately represent in order to simulate surface climate variability and change adequately. For the first time, the Climate Model Intercomparison Project includes in its phase 6 (CMIP6) a set of diagnostics that allow for careful evaluation of the BDC. Here, the BDC is evaluated against observations and reanalyses using historical simulations. CMIP6 results confirm the well-known inconsistency in the sign of BDC trends between observations and models in the middle and upper stratosphere. Nevertheless, the large uncertainty in the observational trend estimates opens the door to compatibility. In particular, when accounting for the limited sampling of the observations, model and observational trend error bars overlap in 40 % of the simulations with available output. The increasing CO2 simulations feature an acceleration of the BDC but reveal a large spread in the middle-to-upper stratospheric trends, possibly related to the parameterized gravity wave forcing. The very close connection between the shallow branch of the residual circulation and surface temperature is highlighted, which is absent in the deep branch. The trends in mean age of air are shown to be more robust throughout the stratosphere than those in the residual circulation.

Because the forcings to which Coupled Model Intercomparison Project - Phase 5 (CMIP5) models were subjected were poorly quantified, recent efforts from the Radiative Forcing Model Intercomparison Project (RFMIP) have focused on developing and testing models with exacting benchmarks. Here, we focus on aerosol forcing to understand if for a given distribution of aerosols, participating models are producing a radiometrically-accurate forcing. We apply the RFMIP experimental protocol for assessing flux biases in aerosol instantaneous radiative effect (IRE) on two participating models, GFDL AM4 and CESM 1.2.2. The latter model contains the RRTMG radiation code which is widely used among CMIP6 GCM's. We conduct a series of calculations that test different potential sources of error in these models relative to line-by-line benchmarks. We find two primary sources of error: two-stream solution methods and the techniques to resolve spectral dependencies of absorption and scattering across the solar spectrum. The former is the dominant source of error for both models but the latter is more significant as a contributing factor for CESM 1.2.2. Either source of error can be addressed in future model development, and these results both demonstrate how the RFMIP protocol can help determine the origins of parameterized errors relative to their equivalent benchmark calculations for participating models, as well as highlight a viable path towards a more rigorous quantification and control of forcings for future CMIP exercises.

 
The effect of stratospheric ozone depletion is simulated in GFDL AM4 model with three ozone schemes: prescribing monthly zonal mean ozone concentration, full interactive stratospheric chemistry, and a simplified linear ozone chemistry scheme but with full dynamical interactions. While similar amounts of ozone loss are simulated by the three schemes, the two interactive ozone schemes produce significantly stronger stratospheric cooling than the prescribed one. We find that this temperature difference is driven by the dynamical responses to ozone depletion. In particular, the existence of ozone hole leads to strong ozone eddies that are in‐phase with the temperature eddies. The coherence between ozone and temperature anomalies leads to a weaker radiative damping as ozone absorbs shortwave radiation that compensates for the longwave cooling. As a result, less wave dissipates at the lower stratosphere, leading to a weaker descending and dynamical heating over the polar lower stratosphere, and hence a stronger net cooling there. The covariance between ozone and temperature is largely suppressed when ozone is prescribed as monthly zonal mean time series, as is the reduction in the radiative damping following ozone depletion. With much lower computational cost, the simplified ozone scheme is capable of producing similar magnitude of ozone loss and the consequent dynamical responses to those simulated by the full chemistry.
Ming, Y., Loeb, N. G., Lin, P., Shen, Z., Naik, V., Singer, C. E., Ward, R. X., Paulot, F., Zhang, Z., Bellouin, N., Horowitz, L. W., Ginoux, P. A., & Ramaswamy, V. (2021). Assessing the influences of COVID-19 on the shortwave radiative fluxes over the East Asian Marginal Seas. Geophysical Research Letters, 48, e2020GL091699. Publisher’s Version: Assessing the influences of COVID-19 on the shortwave radiative fluxes over the East Asian Marginal Seas
The Coronavirus Disease 2019 (COVID‐19) pandemic led to a widespread reduction in aerosol emissions. Using satellite observations and climate model simulations, we study the underlying mechanisms of the large decreases in solar clear‐sky reflection (3.8 W m−2 or 7%) and aerosol optical depth (0.16 W m−2 or 32%) observed over the East Asian Marginal Seas in March 2020. By separating the impacts from meteorology and emissions in the model simulations, we find that about one‐third of the clear‐sky anomalies can be attributed to pandemic‐related emission reductions, and the rest to weather variability and long‐term emission trends. The model is skillful at reproducing the observed interannual variations in solar all‐sky reflection, but no COVID‐19 signal is discerned. The current observational and modeling capabilities will be critical for monitoring, understanding, and predicting the radiative forcing and climate impacts of the ongoing crisis.

2020

In this study, detailed characteristics of the leading intraseasonal variability mode of boreal winter surface air temperature (SAT) over the North American (NA) sector are investigated. This intraseasonal SAT mode, characterized by two anomalous centers with an opposite sign—one over central NA and another over east Siberia (ES)/Alaska—bears a great resemblance to the “warm Arctic–cold continent” pattern of the interannual SAT variability over NA. This intraseasonal SAT mode and associated circulation exert a pronounced influence on regional weather extremes, including precipitation over the northwest coast of NA, sea ice concentration over the Chukchi and Bering Seas, and extreme warm and cold events over the NA continent and Arctic region. Surface warming and cooling signals of the intraseasonal SAT mode are connected to temperature anomalies in a deep-tropospheric layer up to 300 hPa with a decreasing amplitude with altitude. Particularly, a coupling between the troposphere and stratosphere is found during evolution of the intraseasonal SAT variability, although whether the stratospheric processes are essential in sustaining the leading intraseasonal SAT mode is difficult to determine based on observations alone. Two origins of wave sources are identified in contributing to vertically propagating planetary waves near Alaska: one over ES/Alaska associated with local intraseasonal variability and another from the subtropical North Pacific via Rossby wave trains induced by tropical convective activity over the western Pacific, possibly associated with the Madden–Julian oscillation.
This study uses cloud and radiative properties collected from in situ and remote sensing instruments during two coordinated campaigns over the Southern Ocean between Tasmania and Antarctica in January–February 2018 to evaluate the simulations of clouds and precipitation in nudged‐meteorology simulations with the CAM6 and AM4 global climate models sampled at the times and locations of the observations. Fifteen SOCRATES research flights sampled cloud water content, cloud droplet number concentration, and particle size distributions in mixed‐phase boundary layer clouds at temperatures down to −25°C. The 6‐week CAPRICORN2 research cruise encountered all cloud regimes across the region. Data from vertically pointing 94 GHz radars deployed was compared with radar simulator output from both models. Satellite data were compared with simulated top‐of‐atmosphere (TOA) radiative fluxes. Both models simulate observed cloud properties fairly well within the variability of observations. Cloud base and top in both models are generally biased low. CAM6 overestimates cloud occurrence and optical thickness while cloud droplet number concentrations are biased low, leading to excessive TOA reflected shortwave radiation. In general, low clouds in CAM6 precipitate at the same frequency but are more homogeneous compared to observations. Deep clouds are better simulated but produce snow too frequently. AM4 underestimates cloud occurrence but overestimates cloud optical thickness even more than CAM6, causing excessive outgoing longwave radiation fluxes but comparable reflected shortwave radiation. AM4 cloud droplet number concentrations match observations better than CAM6. Precipitating low and deep clouds in AM4 have too little snow. Further investigation of these microphysical biases is needed for both models.
Horowitz, L. W., Naik, V., Paulot, F., Ginoux, P. A., Dunne, J. P., Mao, J., Schnell, J., Chen, X., He, J., John, J. G., Lin, M., Lin, P., Malyshev, S., Paynter, D., Shevliakova, E., & Zhao, M. (2020). The GFDL global atmospheric chemistry-climate model AM4.1: model description and simulation characteristics. Journal of Advances in Modeling Earth Systems, 12(10), e2019MS002032. Publisher’s Version: The GFDL global atmospheric chemistry-climate model AM4.1: model description and simulation characteristics
We describe the baseline model configuration and simulation characteristics of the Geophysical Fluid Dynamics Laboratory (GFDL)'s Atmosphere Model version 4.1 (AM4.1), which builds on developments at GFDL over 2013–2018 for coupled carbon‐chemistry‐climate simulation as part of the sixth phase of the Coupled Model Intercomparison Project. In contrast with GFDL's AM4.0 development effort, which focused on physical and aerosol interactions and which is used as the atmospheric component of CM4.0, AM4.1 focuses on comprehensiveness of Earth system interactions. Key features of this model include doubled horizontal resolution of the atmosphere (~200 to ~100 km) with revised dynamics and physics from GFDL's previous‐generation AM3 atmospheric chemistry‐climate model. AM4.1 features improved representation of atmospheric chemical composition, including aerosol and aerosol precursor emissions, key land‐atmosphere interactions, comprehensive land‐atmosphere‐ocean cycling of dust and iron, and interactive ocean‐atmosphere cycling of reactive nitrogen. AM4.1 provides vast improvements in fidelity over AM3, captures most of AM4.0's baseline simulations characteristics, and notably improves on AM4.0 in the representation of aerosols over the Southern Ocean, India, and China—even with its interactive chemistry representation—and in its manifestation of sudden stratospheric warmings in the coldest months. Distributions of reactive nitrogen and sulfur species, carbon monoxide, and ozone are all substantially improved over AM3. Fidelity concerns include degradation of upper atmosphere equatorial winds and of aerosols in some regions.
Climate models struggle to accurately represent the highly reflective boundary layer clouds overlying the remote and stormy Southern Ocean. We use in situ aircraft observations from the Southern Ocean Clouds, Radiation and Aerosol Transport Experimental Study (SOCRATES) to evaluate Southern Ocean clouds in a cloud‐resolving large‐eddy simulation (LES) and two coarse resolution global atmospheric models, the CESM Community Atmosphere Model (CAM6) and the GFDL Atmosphere Model (AM4), run in a nudged hindcast framework. We develop six case studies from SOCRATES data which span the range of observed cloud and boundary layer properties. For each case, the LES is run once forced purely using reanalysis data (fifth generation European Centre for Medium‐Range Weather Forecasts atmospheric reanalysis, “ERA5 based”) and once strongly nudged to an aircraft profile(“Obs based”). The ERA5‐based LES can be compared with the global models, which are also nudged to reanalysis data and are better for simulating cumulus. The Obs‐based LES closely matches an observed cloud profile and is useful for microphysical comparisons and sensitivity tests and simulating multilayer stratiform clouds. We use two‐moment Morrison microphysics in the LES and find that it simulates too few frozen particles in clouds occurring within the Hallett‐Mossop temperature range. We tweak the Hallett‐Mossop parameterization so that it activates within boundary layer clouds, and we achieve better agreement between observed and simulated microphysics. The nudged global climate models (GCMs) simulate liquid‐dominated mixed‐phase clouds in the stratiform cases but excessively glaciate cumulus clouds. Both GCMs struggle to represent two‐layer clouds, and CAM6 has low droplet concentrations in all cases and underpredicts stratiform cloud‐driven turbulence.
Fu, Q., White, R. H., Wang, M., Alexander, B., Solomon, S., Gettelman, A., Battisti, D. S., & Lin, P. (2020). The Brewer‐Dobson Circulation During the Last Glacial Maximum. Geophysical Research Letters, 47, e2019GL086271. Publisher’s Version: The Brewer‐Dobson Circulation During the Last Glacial Maximum
The Brewer‐Dobson circulation during the Last Glacial Maximum (LGM) is investigated in simulations using the Whole Atmosphere Community Climate Model version 6. We examine vertical mass fluxes, age of stratospheric air, and the transformed Eulerian mean stream function and find that the modeled annual‐mean Brewer‐Dobson circulation during the LGM is almost everywhere slower than that in the modern climate (with or without anthropogenic ozone depleting substances). Compared to the modern climate, the annual‐mean tropical upwelling in the LGM is 11.3–16.9%, 11.2–15.8%, and 4.4–10.2% weaker, respectively, at 100, 70, and 30 hPa. Simulated decreases in annual‐mean mass fluxes at 70 and 100 hPa are caused by a weaker parameterized orographic gravity wave drag and resolved wave drag, respectively.
Major sudden stratospheric warmings (SSWs), vortex formation and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere-troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projected changes to the polar vortex are robust, particularly in the Northern Hemisphere, possibly due to short data record or relatively moderate CO2 forcing. The new simulations performed under the Coupled Model Intercomparison Project, Phase 6, together with the long daily data requirements of the DynVarMIP project in preindustrial and quadrupled CO2 (4xCO2) forcing simulations provide a new opportunity to revisit this topic by overcoming the limitations mentioned above.
In this study, we analyze this new model output to document the change, if any, in the frequency of SSWs under 4xCO2 forcing. Our analysis reveals a large disagreement across the models as to the sign of this change, even though most models show a statistically significant change. As for the near-surface response to SSWs, the models, however, are in good agreement as to this signal over the North Atlantic: there is no indication of a change under 4xCO2 forcing. Over the Pacific, however, the change is more uncertain, with some indication that there will be a larger mean response. Finally, the models show robust changes
to the seasonal cycle in the stratosphere. Specifically, we find a longer duration of the stratospheric polar vortex, and thus a longer season of stratosphere-troposphere coupling. 
Fu, Q., Solomon, S., Pahlavan, H. A., & Lin, P. (2020). Observed changes in Brewer-Dobson circulation for 1980-2018. Environmental Research Letters, 14, 114026. Publisher’s Version: Observed changes in Brewer-Dobson circulation for 1980-2018
Previous work has examined the Brewer–Dobson circulation (BDC) changes for 1980–2009 based on satellite Microwave Sounding Unit (MSU/AMSU) lower-stratospheric temperature (T LS ) observations and ERA-Interim reanalysis data. Here we examine the BDC changes for the longer period now available (1980–2018), which also allows analysis of both the ozone depletion (1980–1999) and ozone healing (2000–2018) periods. We provide observational evidence that the annual mean BDC accelerated for 1980–1999 but decelerated for 2000–2018, with the changes largely driven by the Southern Hemisphere (SH), which might be partly contributed by the effects of ozone depletion and healing. We also show that the annual mean BDC has accelerated in the last 40 years (at the 90% confidence level) with a relative strengthening of ~1.7% per decade. This overall acceleration was driven by both Northern Hemisphere (40%) and SH (60%) cells. Significant SH radiative warming is also identified in September for 2000–2018 after excluding the year 2002 when a very rare SH stratospheric sudden warming occurred, supporting the view that healing of the Antarctic ozone layer has now begun to occur during the month of September.

2019

Held, I., & co-authors, . (2019). Structure and performance of GFDL’s CM4.0 climate model. Journal of Advances in Modelling Earth Systems, 11, 3691-3727. Publisher’s Version: Structure and performance of GFDL’s CM4.0 climate model
We describe the Geophysical Fluid Dynamics Laboratory's CM4.0 physical climate model, with emphasis on those aspects that may be of particular importance to users of this model and its simulations. The model is built with the AM4.0/LM4.0 atmosphere/land model and OM4.0 ocean model. Topics include the rationale for key choices made in the model formulation, the stability as well as drift of the preindustrial control simulation, and comparison of key aspects of the historical simulations with observations from recent decades. Notable achievements include the relatively small biases in seasonal spatial patterns of top‐of‐atmosphere fluxes, surface temperature, and precipitation; reduced double Intertropical Convergence Zone bias; dramatically improved representation of ocean boundary currents; a high‐quality simulation of climatological Arctic sea ice extent and its recent decline; and excellent simulation of the El Niño‐Southern Oscillation spectrum and structure. Areas of concern include inadequate deep convection in the Nordic Seas; an inaccurate Antarctic sea ice simulation; precipitation and wind composites still affected by the equatorial cold tongue bias; muted variability in the Atlantic Meridional Overturning Circulation; strong 100 year quasiperiodicity in Southern Ocean ventilation; and a lack of historical warming before 1990 and too rapid warming thereafter due to high climate sensitivity and strong aerosol forcing, in contrast to the observational record. Overall, CM4.0 scores very well in its fidelity against observations compared to the Coupled Model Intercomparison Project Phase 5 generation in terms of both mean state and modes of variability and should prove a valuable new addition for analysis across a broad array of applications.

An unprecedented disruption of the Quasi-Biennial Oscillation (QBO) started to develop from late 2015. The early development of this event is analyzed using the space-time spectra of eddies from reanalysis data. While the extratropical waves propagating horizontally into the tropics were assumed to be the main driver for the disruption, it was not clear why these waves dissipated near the jet core instead of jet edge as linear theory predicts. This study shows that the drastic deceleration of the equatorial jet was largely brought about by a single strong wave packet, and the local winds experienced by the wave packet served as a better indicator of the wave breaking latitude than the zonal mean winds.


Surprisingly, tropical mixed Rossby gravity waves also made an appreciable contribution to the deceleration of the equatorial westerly jet by the horizontal eddy momentum fluxes, especially before January 2016. The horizontal eddy momentum fluxes associated with the tropical waves arise from the deformation of the wave structure when background westerlies increase with height. These horizontal eddy momentum anomalies from the tropical waves are commonly observed in the reanalysis data, but are typically much weaker than those in the 2015/2016 winter. The possibility exists that exceptionally strong equatorially trapped waves precondition the flow to disruption by an extratropical disturbance.

2017

Pan, F., Huang, X., Leroy, S. S., Lin, P., Strow, L. L., Ming, Y., & Ramaswamy, V. (2017). The Stratospheric Changes Inferred from 10 Years of AIRS and AMSU-A Radiances. Journal of Climate, 30, 6005-6016. Full text: The Stratospheric Changes Inferred from 10 Years of AIRS and AMSU-A Radiances
Solomon, S., Ivy, D., Gupta, M., Bandoro, J., Santer, B., Fu, Q., Lin, P., Garcia, R. R., Kinnison, D., & Mills, M. (2017). Mirrored changes in Antarctic ozone and stratospheric temperature in the late 20th versus early 21st centuries. Journal of Geophysical Research, 122(16), 8940-8950. Full text: Mirrored changes in Antarctic ozone and stratospheric temperature in the late 20th versus early 21st centuries
Geng, L., Murray, L. T., Mickley, L. J., Lin, P., Fu, Q., Schauer, A. J., & Alexander, B. (2017). Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions. Nature, 546(7656), 133-136. Full text: Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions
Lin, P., Paynter, D., Ming, Y., & Ramaswamy, V. (2017). Changes of the Tropical Tropopause Layer under Global Warming. Journal of Climate, 30(4), 1245-1258. Full text: Changes of the Tropical Tropopause Layer under Global Warming
Hardiman, S. C., Lin, P., Scaife, A. A., Dunstone, N. J., & Ren, H.-L. (2017). The influence of dynamical variability on the observed Brewer-Dobson circulation trend. Geophysical Research Letters, 44(6), 2885–2892. https://doi.org/10.1002/2017GL072706
Jia, L., Yang, X., Vecchi, G., Gudgel, R., Delworth, T., Fueglistaler, S., Lin, P., Scaife, A. A., Underwood, S., & Lin, S.-J. (2017). Seasonal Prediction Skill of Northern Extratropical Surface Temperature Driven by the Stratosphere. Journal of Climate, 30(12), 4463-4475. https://doi.org/10.1175/JCLI-D-16-0475.1

2015

Fu, Q., Lin, P., Solomon, S., & Hartmann, D. L. (2015). Observational evidence of strengthening of the Brewer-Dobson circulation since 1980. Journal of Geophysical Research-Atmospheres, 120(19), 10214-10228. https://doi.org/10.1002/2015jd023657

2014

Geng, L., Cole-Dai, J., Alexander, B., Erbland, J., Savarino, J., Schauer, A. J., Steig, E. J., Lin, P., Fu, Q., & Zatko, M. C. (2014). On the origin of the occasional spring nitrate peak in Greenland snow. Atmospheric Chemistry and Physics, 14(24), 13361-13376. Full text: On the origin of the occasional spring nitrate peak in Greenland snow
Fueglistaler, S., Abalos, M., Flannaghan, T. J., Lin, P., & Randel, W. J. (2014). Variability and trends in dynamical forcing of tropical lower stratospheric temperatures. Atmospheric Chemistry and Physics, 14(24), 13439-13453. Full text: Variability and trends in dynamical forcing of tropical lower stratospheric temperatures

2012

Wallace, J. M., Fu, Q., Smoliak, B., Lin, P., & Johanson, C. M. (2012). Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14337-14342. Full text: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season
Lin, P., Fu, Q., & Hartmann, D. L. (2012). Impact of Tropical SST on Stratospheric Planetary Waves in the Southern Hemisphere. Journal of Climate, 25(14), 5030-5046. https://doi.org/10.1175/JCLI-D-11-00378.1

2011

Fu, Q., & Lin, P. (2011). Poleward Shift of Subtropical Jets Inferred from Satellite-Observed Lower-Stratospheric Temperatures. Journal of Climate, 24(21), 5597-5603. https://doi.org/10.1175/JCLI-D-11-00027.1

2009

Lin, P., Fu, Q., Solomon, S., & Wallace, J. M. (2009). Temperature Trend Patterns in Southern Hemisphere High Latitudes: Novel Indicators of Stratospheric Change. Journal of Climate, 22(23), 6325-6341. https://doi.org/10.1175/2009JCLI2971.1